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I.INTRODUCTION

The theory of impulsive differential equations appears as a neutral description of
several real processes subject to certain perturbations whose duration is negligible in
comparison with the duration of the process. It has seen considerable development in the last
decade, see the monographs of Benchohra et al. [4], Haddad et al.[10], Lakshmikantham et al.
[16], the papers [1,3, 5, 6, 7,8, 15,19,21] and the references therein.

Neutral differential systems with impulses arise in many areas of applied mathematics
and for this reason these systems have been extensively investigated in the last decades.
Recently, much attention has been paid to existence results for partial functional differential
equations with state-dependent delay, and cite the works [2, 11, 12, 13, 14,17, 18, 20] and the
references therein. To the best of our knowledge, few papers can be found in the literature on
the existence of mild solutions for an abstract impulsive differential inclusion with State
delay. In the present paper we consider existence results for impulsive neutral differential
inclusions with state-dependent delay such as
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%[x(t) —g(t,x)]e Ax) + Flt. x| t=t, ted=[0,a] (1.1)
X, =¢<€B (1.2)
AX(t) = 1,(x, ), t=t; i=12,...n (1.3)

where A is the infinitesimal generator of a compact, analytic semigroup T(t), t>0 in a
Banach space X;F:JxB—>P(X) is a bounded closed convex-valued multi-valued

map, P(X) is the family of all nonempty subsets of X;g:JxB— X, p:JxB —(—x,a],
I,:B— X, i=12,..,n, are appropriate functions, where Bis an abstract phase space

defined below, O0=t,<t <..<t, <t.,=a, AEM)=S&(@t")-&(t7), &) and £&(t7)
represent the left and right limits of £(t) at t. The histories
X, 1 (0,01 > X, x.(s)=x(t+s), s<0,

belong to the abstract phase space B .
Il. PRELIMINARIES

In this section, we introduce some basic definitions, notations and results which are
used throughout this paper.

Let C(J,K)be the Banach space of continuous functions y from J into X with the
norm |y||=sup{||y(t)|:t e J}. L(X)denotes the Banach space of bounded linear operators
from X into itself. A measurable function y:J — X is Bochner integrable if and only if
ly| is Lebesgue integrable. For properties of the Bochner integral see Yosida [22]. L*(J, X)
is the Banach space of continuous functions y:J — X which are Bochner integrable and

« = [yt

A multi-valued map G: X — P(X) is convex (closed) valued if G(x) is convex
(closed) for all xeX. G is bounded on bounded sets if G(B) =u,_; G(X)is bounded in X
for any bounded set B of X (i.e. sup,_s{sup{||y|: y € G(x)}} < ).

equipped with the norm ||y

G is called upper semi-continuous (u.s.c.) on X if for each x, € X, the set G(x,) is a
nonempty closed subset of X, and if for each open set Q of X containing G(X,), there
exists an open neighbourhood V of x, such that G(V) < Q.

G is said to be completely continuous if G(€) is relatively compact for every
bounded subset Q of X .

If the multi-valued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph (i.e., X, > X., Y, > V., Y, €G(X,)

imply y. € G(x.)).

An upper semi-continuous multi-valued map G: X — P(X) is said to be condensing [9]
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if for any subset B< X with N(B)=0we have N(G(B))<N(B), where N denotes the
Kuratowski measure of non-compactness [3].

Let P, (X) denote the classes of all bounded and compact convex subsets of X.

cp,ev

G has a fixed point if there is an xe X Such that x e G(X). For more details on
multi-valued maps, see the books of Deimling [9] and Hu and Papageorgiou [15].

Let C forbmed by all functions y:[0,a] > Xsuch that y is continuous at
t=t,y(t)=y(t,) and y(t))exists for all k=212,...,n. In this paper we always assume that

¢C is endowed with the norm ||y||WC =sup,,|ly(s)[. It is clear that (SOC’”'”pc) is a Banach

space.

To set the framework for our main existence results, we need to introduce the
following definitions and lemmas. In this work we will employ an axiomatic definition for
the phase spase B which is introduced in [11]. Specifically, B will be a linear space of

functions mapping (-o0,0] into X endowed with a seminorm ||, and satisfies the following
axioms:

(A) If x:(-o,0+a)—> X, a>0, is such that x, .., €0C([lo,0+a],X) and X, €B,

then for everyt €[, o +a] the following conditions hold:

Q) X, is in B.
(i) [xf<Hix],-
(i) |x ], < Kt-o)sup{[x(s)|: o <s<t}+M(t—o)|x,]||, . whereH >0 is a constant;

K,M :[0,0) - [1,), K continuous. M is locally bounded, and H,K,M are
independent of x(.).
(B) The space B is complete.

Definition 2.1. A function x:(—oc,a) — X, is called a mild solution of the problem (1.1)-
(1.3) if X, =¢, X,,,€Bfor every seJ and Ax(t)=1;(x,), i=12..n the function
AT (t—s)g(s, x,) is Bochner integrable and the impulsive integral inclusion

X(t) e TM[H0) - 90 A+ 9t x) + [ AT (t - 5)g(s. x,)ds

+jT(t —S)F (S, X, )ds+ D T(t—t)1;(x,)

O<t; <t
is satisfied.

Lemma 2.1. [17] Let X be a Banach space. Let F:JxB — p_ . (X) satisfy
Q) The function F(.,i):J — X is measurable for every v €B

(i)  The function F(t,.):B— X isu.s.c.foreach teJ.
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(iii) For each fixed y € B, the set
S¢, ={f el'(3,X): f()eF(t,y) for aeteJ}
is nonempty.

Let T be a linear continuous mapping from L"(J, X) —C(J, X). Then the operator
oS, :C(J,X) = pyp o (C(J3, X)) 'y — ([0S )(y) :T'(Sg,y) is a closed graph operator in
C(J,X)xC(J, X).

Lemma 2.2. [9] Let B be bounded and convex set in Banach space X. I':B—P(B) is a
u.s.c., condensing multi-valued map. If for every x e B, I'(x) is closed and convex set in B,
then I' has a fixed pointin B.

1. EXISTENCE RESULTS

Throughout this section, A:D(A)— X will be the infinitesimal generator of a
compact analytic semigroup of uniformly bounded linear operators T(t)(t>0). Let
O0e p(A), Then it is possible to define the fractional power A%, for O0<a <1, as a closed

linear operator on its domain D(A“). Furthermore, the subspace D(A”) is dense in X and
the expression

HﬂfﬂNWLXEDUW)

defines a norm on D(A”). Hereafter we denote by X _ the Banach space D(A”) normed

with x| . Then for each 0<a <1, X, is Banach space, and X, — X, for 0< g <a <],

and the imbedding is compact whenever the resolvent operator of A is compact. For
semigroup {T (t),.,}, the following properties will be used:

(a) thereisa M >1 such that [T (t)|<M forall0O<t<a;
(b) for any 0<a<t, there exists a positive constant C,, such that

For more details about the above preliminaries, we refer to [22].
In order to define the solution of system (1.1) — (1.3) we shall consider the space

Q={x[0,a] > X, :x, €C(J,,X,), k=01..m, and there exist x(t,) and Xx(t,)
k=01..,m, with x(t,) =x(t,), x(0)= ¢}, which is a Banach space with the norm
X, = max]x, |, . k=04,...m},

Nﬁaﬂsgg,0<tga

% (s)],-

Where x(t, ) is the restriction of xto J, = (t,,t,,;], k=01..m,and |x,|, =sup,.,

In this section, we state and prove the existence theorem for the problem (1.1) — (1.3).
Let us list the following hypothesis: for some « € (0,1).

(Hy) There exists a constant € (0,1) a < <1suchthat g:[0,a]x X, — X, is a continuous
function, and A”g:[0,a]x X, — X, satisfies the Lipschitz condition, that is, there exists a
constants L >0, L, >0 such that

HAﬁg(t,l/ll)—Aﬂg(t,l/lz)Ha = I—(”Wl _l//2||B for y,,w, B
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and
HAﬁg(t,l//)H < L1(||l//||ﬁ +1) for y B, tel.

(H2) F:IxB =P, »(X); (t,w) > F(t,w) is measurable with respect to t for each
w € B, u.s.c with respect to w for each w € J, and for each fixed y € B, the set

S¢, ={f el'(3,X): f(t) e F(t,p) forae tel}

is non empty.

(H3) There exists an integrable function m:J —[0,+c0) and a continuous nondecreasing
function W :[0,+00) —[0,+o0) such that

|IF & w)|| =sup{| f|: f () e Ft,w)}<mt)W (||x,//||B), (t,w) e J xB.
(Ha) The function |, :B — X is continuous and there are positive constants L i=12..n,
such that
”Ii(l//l)_ Ii(’//z)”S Li”l//l _W2”B'
forevery v, eB, j=12, i=12..n

Lemma 3.1. [11] If y:(-o,a)— X is a function such that y, =¢ and y|,e ©C(J, X),
then

Ivsl, <M, +37)g], + K. sup{|y(@)]; 6 <[0,max{0,s}}, seR(p )],

where J_"’=sup J?(t), M, =sup,_; M(t) and K, =max,_, K(t).

teR(p”)

Theorem 3.2. Assume that (H;)—(H,) are satisfied, then the problem (1.1)—(1.3) admits at
least one mild solution provided that,

K, (LA™ + L%aﬂ +MiLi)<1 (3.1)
HA_ﬁHLlKa+Cl?_ﬁa’8|—1Ka+KaM(Limb@V%im(s)dﬁgg)d (3.2)

Proof. On the space Q={u e PC:u(0)=¢(0)} endowed with the uniform convergence

norm (||| ), we define the operator N : Q2 — P(Q) by

N() =fu e Q:u(t) =T O[#(0) - 9(0.#)1+ g(t. ) + [ AT (t—s)g(s, X, )ds

+j'T(t—s)f(s)ds+ YTE-t)(y,)  feS, -, tel},

O<t;<t

where S_ — ={f e '(J,X): f(t) e F (t, X(x)), t € J}, X: (-0, 8] > X is such that X, = ¢
and x=yon J.Let ¢:(—o,a) > X be the extension of ¢to (—o,a] such that ¢(6) = #(0)
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on Jand J* =sup{J?(s):seR(p")}. In order to apply [Lemma 2.2] we give the proof in
several steps.

Step:1 There exists r>0 such that N(B,)=B,, where B, ={xeQ:|x|_ <r}.For each
r>0, B, is clearly a bounded closed convex subset in €. We claim that there exists r >0,
such that N(B,) = B,, where N(B,)=U,; N(x). In fact, if it is not true, then for each

r >0, there exists x" € B, such that u" e N(x") but |lu’

>r and

u" (1) =TOHO) - 9(0.4)]+ g(t,x) + [ AT (t—5)g(s,x{)ds

+j.T(t—s)f’(s)ds+ ST E-t)1,(),

O<t; <t
Forsome f" eS.,, Consequently, we have
Xp

r

r<ju = maX

o ted

u" (t)

T(O[#(0) - 9(0.#)1+a(t. X))+ [ AR(t—5)g(s, y Jds+ [T(t—s) f"(s)ds+ D T(t—t)1,(x])

O<t;<t

Hence , Lemma 3.1 for some t e[0,a]

r <[TOWO) - A7 A gO.H] +| A7 A g(tx) +

t _
[ AT (t-s)g(s,y})ds
0

+ +

ST (E-t)1,0¢),

O<t; <t

'th(t—s) f"(s)ds

MO8, -]
t Cl_ t . n _r
+£ . _S)ﬁﬂ L ( +M !‘ £7(s)[ds+M ;HIi(Xt. )—1.(0) + 'i(O)H'

<M [||¢(0)||+HA-ﬁ H|_1(||¢||B +1)]+HA-ﬂ HLI(Kar +M,|g], +1)

X;

+1)
B

r
XS

. +1)ds

+C1—ﬂﬂaﬂLl(Kar +M,|¢|, +1)

+MW (M, + ;T¢)||¢||B + Kar)f m(s)ds+ M Zn:Li (K,r+ Ma||¢||B +[1, (O],
and thus,
1< (ALK, +Cl—ﬂ-ﬁa/fL1Ka +K,M ;mev%im(s)ds+ KMYL)

which contradicts (3.2). Hence there exists r >0 such that N(B,) < B, .
Let r >0 be suchthat N(B,) = B,. If xe B, , from Lemma 3.1, it follows that

<=M+ T, K (33)

pr(t&u
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Step:2  N(X) is convex for each x e X . Indeed, if u,,u, € N(x),
Then there exist f,, f, €S_; , suchthat t € J we have,

u (1) =T OF(0) - 90,1+ g(t,x) + [ AT (t-s)g(s,x,)ds

+jT(t $)f,(s)ds+ S T(t-t)1,(x ), i=12.

O<t; <t

Let 0<A<1. Then foreach teJ we have,

(AU, + (L= 2)u,) () =T (O[H(0) - 9 (0, 4]+ 9t ) + j AT (t—s)g(s, x,)ds

+jT(t S, () + (1= 2) F, ()]s + ST (t—t)l(x,).

O<t;<t

Since SF‘;p Is convex ( because F has convex values), (Au, +(1—A)u,) € N(X).

Step:3 N(x) is closed for each x e X.
Let {X, }.-0 € N(X) such that x, — xinX. Then x € X and there exists f eS_—

Such that, for each teJ,

X, (1) =T O[$(0) - 9 (0, H)]+ gt x,) + j AT (t—5)g(s, %, )ds

+J.T(t s)f,(s)ds+ Y T(t—t)1; ().

O<t; <t
Using the fact that F has a nonempty compact value, there is a subsequence if

necessary to get that v, converges to v in L*(J,X) and hence v e Sk . Then for each te J,

X, (t) > x(t) =T ()[$(0) - 9(0, )]+ 9 (t, x,) + J AT (t- s)g(s,Z)ds

+jT(t s)f(s)ds+ D T(t—t)1;(xy).

O<t; <t

Thus, x e N(X).

Step: 4 N u.s.c and condensing.

To prove that N is u.s.c and condensing, we introduce the decomposition
N =N, + N,, where

(N,Y)(®) = g(t, X)) - T (t)g(O, ¢)+jAT(t—s)g(s Xs)ds+ > T (t—t)1;(x).

O<t; <t

(N,X)(t) ={u e X 1u(t) =T (t)¢(0) +jT(t—s) f(s)ds, fes. }
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we will verify that N, is a constraction while N, is a completely continuous operator. To

prove that N, is a contraction, we take X ,X € B, arbitrarily. Then for each te J, we
have that,

N - (N < ot ) - 96 x|

+

[ ATt -9)[g(s, %) - 9(s, X )]ds

+

STt —1,(¢7)

O<t; <t

<|A7 A g () - A (96 X))

+

[ AT (- ) Aa (5,0 - 95, X )1ds

X — X

+M Zn: L,
i=1

<L

B

T = -B
X, — X, ‘A H

iy

t C - R .
+I—1’ﬁ Lix. —x." X, — X

2 (t—s)"”
< LAk, sup{H?(e) - x_**(e)H, 0<0<s}

X

S
B

Bds+MiZ=1:Li

i LCl—ﬂ‘ﬁ a’K., sup{HF(e) L x_“(e)H, 0<0<s}

+MY LK, sup{lx(6) - x_**(e)H, 0<o<t}
i=1

X (s) - x_**(s)H

<L sup

0<s<al

=L sup

0<s<a

X"(s)=x"(s)| (Since x=x on J),
Where
L =K, (L|A™] +C1—ﬂ‘;3aﬂL+ M le L),
thus,
N7 =Ny < L=

Therefore, by (3.1) we obtain that N, is a contraction,
Next, we show that N, is u.s.c
0) N, (B,) is clearly bounded,
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(i) N, (B, ) is equicontinuous.
Let t,,t, €J, t, <t,. Let Xxe B, and ue N,(x). Than there exists f €S_ - such that

for each t € J, we have
u(t) =T(t)g(0) + jT (t—s)f(s)ds.
Then, 0

Ju(t,) —u(w)] <[IT (t,) = T (1)1 (0)] +

T -9 Tt -9 (5)ds

+ +

tj'['l'(t2 —s) f(s)ds

4

}F(tz —8) =T (t, —s)]f(s)ds

t,—e

t,—e

<|T ) -T @) +W (") |

[T (t, — ) - T (t, - s)]m(s)ds

+2MW (r") ii' m(s)ds + MW (r*)T m(s)ds,

t,—e 17

Where 1" is defined in (3.3).

As t, =t and for € sufficiently small, the right-hand side of the above ineauality tends
to zero independently of X € B,, since T(t—S) strongly continuous and compactness of
T(t—s), t>s implies the continuity in the uniform operator topology.

(i) (N,B)(@) ={u(t):ueN,(B,), teJ} is precompact for each teJ.
Obviously, N, (B,)(t) is relatively compact in X for t=0. Let 0 <t <abe
fixed and O<e<t, for xe B, and ueN,(x), there exists a function

fe SF,E such that

u(t) <T(t)¢(0) + TT (t—s)f(s)ds+ jT (t—s)f(s)ds.
Define, 0 -

u_(t) <T(t)¢(0) + TT (t—s)f(s)ds

=T (t)$0) +T (t,t— e)TT (t—,s) f (s)ds

Since T (t —s)(t > S) is compact, the set
U_(t) ={u_(t) :u e N,(B,)}
Is relatively compact in X for every €, 0 <e<t. Moreover, for every ueN,(B,)

luct) —u () =

jT(t —s) f(s)ds
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<MW(r") Jt'm(s)ds -0,

as €—0, where r" is defined in (3.3). We note that there are relatively compact sets
arbitrarily close to the set {u(t):ue N,(B,)}..

So the set {u(t) :u e N, (B,)} is relatively compact in X.

From the Arzela-Ascoli theorem we can conclude that N, is a completely continuous
multi-valued map.
(iv) N, has a closed graph.

Let X" — x',x"eB,,u, eN,(x"), and u, — u’, we prove that u” eN,(x). The
relation u, € N, (x") means that there exists f, S_ such that for each te J.

Xp

u, () =T (t)g(0)+ j.T(t -s) f, (s)ds.

We must prove that there exists f~ e SF — such that for each te J,

P

uxo:11o¢m)+futs)rxgds

we have,
Jlu, ~T @©p(©)1-[u" - T OHO)Y] >0

Consider the linear continuous operator

rﬂU@xy»qu,far%nm:husﬁ@ma

From Lemma 2.1, it follows that N"0S_ is a closed graph operator. Moreover, we have
u, (0)-T ()s(0) e F*(SF@)

In view of X" — x’, it follows from Lemma 2.1 again that
u ()-T ()¢(0) e F*(SF@)

that is, there must exist a x"(t) e SF = such that
t
u (t)-Tp)=T"(f ()= J'T (t—s)f (s)ds.
0

Therefore, N, is u.s.c. Hence N =N, +N, is u.s.c. and condensing. By the fixed

point Lemma 2.2, there exists a fixed point x for N on B, , which implies that the problem
(1.1) — (1.3) has a mild solution.

Example

In this section, we consider an application of our abstract results. At first we introduce
the required technical framework. In the rest of this section, X =L*([0,7]) and A be the
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operator Au=u" with domain D(A)={ue X :u" e X,u(0) =u(rz) =0}. It is well known that
A is the infinitesimal generator of an analytic semigroup on X . Furthermore, A has a
discrete spectrum with eigen values of the form —n?, ne N,whose corresponding

(normalized) eigen function are given by zn(g’)zx/zsin(ng”). In addition, the following
T

properties hold.
(@) {z, :ne N} is an orthonormal basis of X :

(b)Forue X,T(tu=>e™ <u,z,>z, and Au=->n?<u, z, >z, for ue D(A):

n=1 n=1
(c) It is possible to define the fractional power (—A)*,a €(0,1), as a closed linear operator
over its domain D((—A)“). More precisely, the operator (-A)* : D((-A)*) < X —» X

Is given by (-A)“u :inz" <u,z,>1,,

n=1
For all ue D(-A)“,
where D(-A)* ={u e X :inz"‘ <u,z, >2, € X}

n=1

(d) If X, is the space D(—A)“ endowed with the graph norm ||| then X, is a Banach
space. Moreover, for 0<fg<a<l X, c X,; the inclusion X, 6 — X, is completely
continuous and there constants C, >0 such that [T (t)| < (t:_: for t>0.

i IV,

As an application of the theorem (3.1), we study the following impulsive partial neutral
functional differential system.

%[u(t, ¢)- [ [b(t-s,m,5)u(s.n)dnds]e [a(s—tyu(s—p,t)p, (u®)]).7)ds,

—00

tel, ne[0,r] 4.1
u(t,0)=u(t,7) =0, tel (4.2)
u(z,¢)=¢(zr,¢), ©<0, 0<S <, (4.3)
ut)-u(t ) =1 (), i=12,...,m, (4.4
where g B=pCxL*(g,x)and 0 <t; < - - - <t, < b are prefixed. Under these conditions,

we can define the operators, p, g, F: I x B — X and [ : B — X by,
pt.yw) = p ) p, (v (O))),

9w = [[ bs,v. )y (s,v)dvds,

—00

FWw)(©) = [alsl(s.)ds,

ut")—u(t ) =1.(u(t)), i=12,..,m,

which permit to transform system (4.1) — (4.4) into the system (1.1) — (1.3). Moreover, the
maps, 9,F, I, i=12,..,m, are bounded linear operators. Thus, the assumptions (H1) —

(H4) are hold. All conditions of theorem 3.1 are now fulfilled so we deduce that (4.1) — (4.4)
has an integral solution.
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